Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling

نویسندگان

  • Andreas Brodehl
  • Darrell D. Belke
  • Lauren Garnett
  • Kristina Martens
  • Nelly Abdelfatah
  • Marcela Rodriguez
  • Catherine Diao
  • Yong-Xiang Chen
  • Paul M. K. Gordon
  • Anders Nygren
  • Brenda Gerull
چکیده

BACKGROUND Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder leading to ventricular arrhythmias and heart failure, mainly as a result of mutations in cardiac desmosomal genes. Desmosomes are cell-cell junctions mediating adhesion of cardiomyocytes; however, the molecular and cellular mechanisms underlying the disease remain widely unknown. Desmocollin-2 is a desmosomal cadherin serving as an anchor molecule required to reconstitute homeostatic intercellular adhesion with desmoglein-2. Cardiac specific lack of desmoglein-2 leads to severe cardiomyopathy, whereas overexpression does not. In contrast, the corresponding data for desmocollin-2 are incomplete, in particular from the view of protein overexpression. Therefore, we developed a mouse model overexpressing desmocollin-2 to determine its potential contribution to cardiomyopathy and intercellular adhesion pathology. METHODS AND RESULTS We generated transgenic mice overexpressing DSC2 in cardiac myocytes. Transgenic mice developed a severe cardiac dysfunction over 5 to 13 weeks as indicated by 2D-echocardiography measurements. Corresponding histology and immunohistochemistry demonstrated fibrosis, necrosis and calcification which were mainly localized in patches near the epi- and endocardium of both ventricles. Expressions of endogenous desmosomal proteins were markedly reduced in fibrotic areas but appear to be unchanged in non-fibrotic areas. Furthermore, gene expression data indicate an early up-regulation of inflammatory and fibrotic remodeling pathways between 2 to 3.5 weeks of age. CONCLUSION Cardiac specific overexpression of desmocollin-2 induces necrosis, acute inflammation and patchy cardiac fibrotic remodeling leading to fulminant biventricular cardiomyopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac-Specific Overexpression of Catalase Identifies Hydrogen Peroxide-Dependent and -Independent Phases of Myocardial Remodeling and Prevents the Progression to Overt Heart Failure in G q-Overexpressing Transgenic Mice

Background—Although it seems that reactive oxygen species contribute to chronic myocardial remodeling, questions remain about (1) the specific types of reactive oxygen species involved, (2) the role of reactive oxygen species in mediating specific cellular events, and (3) the cause-and-effect relationship between myocardial reactive oxygen species and the progression to heart failure. Transgeni...

متن کامل

Homozygous founder mutation in desmocollin-2 (DSC2) causes arrhythmogenic cardiomyopathy in the Hutterite population.

BACKGROUND Dominant mutations in cellular junction proteins are the major cause of arrhythmogenic cardiomyopathy, whereas recessive mutations in those proteins cause cardiocutaneous syndromes such as Naxos and Carvajal syndrome. The Hutterites are distinct genetic isolates who settled in North America in 1874. Descended from <100 founders, they trace their origins to 16th-century Europe. METH...

متن کامل

Elafin-overexpressing mice have improved cardiac function after myocardial infarction.

Elevated serine elastase activity after myocardial infarction can contribute to remodeling associated with left ventricular dilatation and dysfunction. We therefore assessed the effects of overexpressing the selective serine elastase inhibitor elafin in transgenic mice in which a myocardial infarction was caused by ligation of the left anterior descending coronary artery (LAD). Elevated serine ...

متن کامل

Mechanistic insights into arrhythmogenic right ventricular cardiomyopathy caused by desmocollin-2 mutations

AIMS Recent immunohistochemical studies observed the loss of plakoglobin (PG) from the intercalated disc (ID) as a hallmark of arrhythmogenic right ventricular cardiomyopathy (ARVC), suggesting a final common pathway for this disease. However, the underlying molecular processes are poorly understood. METHODS AND RESULTS We have identified novel mutations in the desmosomal cadherin desmocollin...

متن کامل

Inactivation of GSK-3β by Metallothionein Prevents Diabetes-Related Changes in Cardiac Energy Metabolism, Inflammation, Nitrosative Damage, and Remodeling

OBJECTIVE Glycogen synthase kinase (GSK)-3beta plays an important role in cardiomyopathies. Cardiac-specific metallothionein-overexpressing transgenic (MT-TG) mice were highly resistant to diabetes-induced cardiomyopathy. Therefore, we investigated whether metallothionein cardiac protection against diabetes is mediated by inactivation of GSK-3beta. RESEARCH DESIGN AND METHODS Diabetes was ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017